GCSE

 Electronic Products

 Electronic Products}

Revision Workbook

\qquad

Question 1:

State the advantages and disadvantages of these sources of power

Type	Advantages	Disadvantages
Solar panel		
Zinc-Carbon batteries		
Alkaline batteries		
Ni-Cad batteries		
Lead-Acid batteries		
Mains power supply		

This page is all about deciding which power supplies are best for particular products.
Select the most suitable power supply (from those shown below) for the different products.

Product	
Garden path lights	Hint: Must work outside without the need of batteries to be replaced.
Remote control car	Hint: Draws a large current and needs to be rechargeable.

Remember:

An output is a component that produces light, heat, sound or movement.
An input is a component that converts one form of energy into an electrical energy.

Photograph	Name	Symbol	Input or Output?	What it does

Question 1:

Complete this table below

Switch Type	Stands for	Symbol	What it can be used for
PTM			
PTB			
SPST			
SPDT			
DPDT			

Use the colour code to work out these resistances:

Band 1	Band 2	Band 3 (Multiplier)	Band 4 (Tolerance)	Resistance	Tolerance
Brown	Black	Brown	Gold		
Brown	Black	Red	Gold		
Brown	Black	Orange	Gold		
Brown	Black	Yellow	Gold		
Brown	Blue	Red	Silver		
Red	Red	Red	Silver		
Brown	Green	Blue	Silver		
Red	Violet	Orange	Gold		
Black	Brown	Brown	Gold		
Blue	Green	Brown	Gold		
Blue	Green	Black	Silver		
				56K	5\%
				220R	5\%
				32 K	5\%
				1M2	10\%
				10R	5\%
				120R	5\%
				560K	10\%
				3 K 3	10\%
				4K7	5\%
				560R	10\%

Labelling Resistors

Resistance is measured in Ohms but we usually label them using either R,K or M. Convert these resistance values into how you would see them on a circuit diagram:

Resistance	How it would look on a diagram
1 Ohm	
10 Ohms	Example 1OR
100 Ohms	
1000 Ohms	Example: 1 K
10,000 Ohms	
$1,000,000$ Ohms	
$10,000,000$ Ohms	

Resistance	How it would look on a diagram
1200 Ohms	Example: 1K2
5600 Ohms	
6800 Ohms	
1500 Ohms	
2200 Ohms	
3200 Ohms	
120 Ohms	
560 Ohms	
10,000 Ohms	
22,000 Ohms	
170,000 Ohms	
120,000 Ohms	
$1,500,000$ Ohms	
$10,000,000$ Ohms	

Preferred Values: E12 Series

Real resistors are only available in certain values, these are known as preferred values.
Complete the table showing what resistors are available to us in the E12 range:

E12 Preferred value (10s)	E12 Preferred Value 100s Ohms	E12 Preferred Value 1000s	E12 Preferred Value 10,000	E12 Preferred Value 100,000	E12 Preferred Value $1,000,000$
10	100	1 K	10 K	100 K	1 M
12					
15					
18					
22					
27	270	$2700(2 \mathrm{~K} 7)$	27 K		
33					
39					
47					
56	560				
68					
82					

Convert these resistance values into ones that you can actually buy:

Resistance Value	E12 Preferred Value
13 R	
122 R	
11 K	
123 K	
986 R	
99 K	

Resistance Value	E12 Preferred Value
564 K	
555 R	
11 K	
104 R	
44 K	
1 M 3	

Preferred Values: E24 Series

Real resistors are only available in certain values, these are known as preferred values.
Complete the table showing what resistors are available to us in the E24 range:

E24 Preferred value (10s)	E24 Preferred Value 100s Ohms	E24 Preferred Value 1000 s	E24 Preferred Value 10,000	E24 Preferred Value 100,000	E24 Preferred Value $1,000,000$
10	100	1K	10K	100K	1M
11					
12					
13					
15					
16					
18					
20					
22					
24					
27	270	2700 (2K7)	27K	270K	2M7
30					
33					
36					
39					
43					
47					
51					
56	560	5600 (5K6)	56K	560K	5M6
62					
68					
75					
82					
91					

Convert these resistance values into ones that you can actually buy:

Resistance Value	E24 Preferred Value
13 R	
122 R	
11 K	
123 K	
986 R	
99 K	

Resistance Value	E24 Preferred Value
564 K	
555 R	
11 K	
104 R	
44 K	
1 M 3	

Question 1:

When the switch is open the output voltage is: \qquad

When the switch is closed the output voltage is: \qquad

Question 2:

When the switch is open the output voltage is: \qquad

When the switch is closed the output voltage is: \qquad

Question 3:

When the potentiometer is turned fully anticlockwise the output voltage will be:
\qquad Volts

When the potentiometer is turned fully clockwise the output voltage will be:
\qquad Volts

When the potentiometer is in the centre position the output voltage will be:
\qquad Volts

$$
V s=\frac{R 2}{R 1+R 2} \times V
$$

$V_{s}=\frac{200}{100+200} \times 10$
$V s=\frac{200}{300} \times 10$
$V s=0.67 \times 10$
$V s=6.7 \mathrm{~V}$

Question 1:

$R 1=220 R$
$R 2=220 R$
$V=12 V$
$V \mathrm{~S}=$

\qquad
\qquad
\qquad
\qquad

Question 2:
$R 1=100 R$
$R 2=300 R$
$V=12 \mathrm{~V}$
$V_{s}=$
\square

$$
V s=\frac{R 2}{R 1+R 2} \times V
$$

Question 3:

R 1	$=$	1 K
R 2	$=$	1 K
$\mathrm{~V}=$	$=12 \mathrm{~V}$	

V s $=$

Question 5:
$\mathrm{R1}=20 \mathrm{~K}$
R2 $=1 \mathrm{~K}$
$\mathrm{V}=6 \mathrm{~V}$

V s $=$

Question 1—Light Dependent Resistors:

a) When is dark the LDR has a high / low resistance
b) When it is dark the output voltage is therefore high / low
c) When it is light the LDR has a high / low resistance
d) When it is light the output voltage is therefore high / low

Question 2—Light Dependent Resistors:

In this circuit the LDR and resistor have been switched over
a) When is dark the LDR has a high / low resistance
b) When it is dark the output voltage is therefore high / low
c) When it is light the LDR has a high / low resistance
d) When it is light the output voltage is therefore high / low

Question 3—Thermistors:

a) A positive temperature coefficient (PTC) thermistor:

When it is hot the resistance is high / low
When it is cold the resistance is high / low
b) A negative temperature coefficient (NTC) thermistor:

When it is hot the resistance is high / low
When it is cold the resistance is_high / low

When using an LED a current limiting resistor must be added to stop it from being damaged. In the exam you may be asked to work out what value the resistor should be. For this you will need a calculator.

Resistance $=$ Supply voltage - 2 Current through LED

Usually the current through the LED should be 20 mA

$$
\begin{aligned}
20 \mathrm{~mA} & =20 \times 10^{-3} \\
& =0.02
\end{aligned}
$$

Question 1:
Supply voltage $=9 \mathrm{~V}$
Current through LED $=20 \mathrm{~mA}$

Resistance $=$

Question 2:
Supply voltage $=12 \mathrm{~V}$
Current through LED $=20 \mathrm{~mA}$
Resistance $=$
\square

Work out what resistor you will need to connect to these circuits:

$$
\text { Resistance }=\frac{\text { Supply voltage }-\mathrm{V}_{\mathrm{D}}}{\text { Current through LED }}
$$

Usually the current through the LED should be 20 mA
$20 \mathrm{~mA}=20 \times 10^{-3}$
$=0.02$

Question 1:

Supply voltage $=4.5 \mathrm{~V}$
Current through LED $=20 \mathrm{~mA}$

Resistance $=$

Question 3:

Supply voltage $=24 \mathrm{~V}$
Current through LED $=20 \mathrm{~mA}$

Resistance $=$
Resistance =
\longrightarrow
\qquad
\qquad \longrightarrow \longrightarrow

Question 2:

Supply voltage $=6 \mathrm{~V}$
Current through LED $=20 \mathrm{~mA}$

Resistance $=$

Question 4:

Supply voltage $=3 \mathrm{~V}$
Current through LED $=20 \mathrm{~mA}$

Resistance $=$

Question 1: Label the circuit symbol below:

Question 2: Complete the following.
When the voltage on the non-inverting input is larger than that on the inverting input the output voltage will be positive / negative / OV.

When the voltage on the inverting input is larger than that on the non-inverting input the output voltage will be positive / negative / OV.

When the voltage on the inverting input is the same as the voltage on the non-inverting input the output voltage will be positive / negative / OV.

Question 3: The circuit on the left is that of a light sensitive switch.
Describe how it works by completing the sentences.

Resistors R1 and R2 form a circuit called a \qquad ـ.

Because R1 and R2 have the same resistance the voltage on the inverting input will be \qquad volts.

The voltage on the non-inverting input depends on how much light shines on the LDR.

Question 4: When it is dark the resistance of the LDR is high / low, therefore the voltage on the non-inverting input will be high / low. If the voltage on the non-inverting input is higher than the inverting input then the output will be high / low. The red / green LED will light.

When it is light the resistance of the LDR is high / low, therefore the voltage on the noninverting input will be high / low. If the voltage on the non-inverting input is higher than the inverting input then the output will be high / low. The red / green LED will light.

Question 1: Label the positive and negative leads of this capacitor:

Question 2: Complete the table below:

	Type	Circuit Symbol	What it does:
	Is it polarised?		

	Type	Circuit Symbol	What it does:
	Is it polarised? (Does it need to be connected the right way around?		

Charging up a capacitor

Charging a capacitor up through a resistor can be used to create a time delay. The time delay can be worked out with the formula:

Time Constant $=$ Capacitance \times Resistance

$$
\begin{gathered}
\text { Or } \\
\mathrm{T}=\mathrm{C} \times \mathrm{R}
\end{gathered}
$$

Question 1: Calculate how long it takes to charge the capacitor up.

Question 1: Complete the circuit diagram of a 555 astable circuit.

Question 2: The diagram below shows a diagram of an 8pin DIL socket:
a.) Add the pin numbers to the diagram.
b.) Add the two things that show which is pin 1.

Question 3: The circuit shown above will make the LED flash on and off. If we plotted a graph of the output voltage it would look like that shown below. Label which part is called the mark and which is called the space.

In an exam you may be asked to calculate the frequency (how often the output turns on and off per second) for a 555 astable.

Question 1:

$R 1=1 K$
$\mathrm{R} 2=10 \mathrm{~K}$
$\mathrm{Cl}=10 \mu \mathrm{~F}$
$\left(10 \times 10^{-6}\right.$ or 0.00001$)$

Question 2:
R1 $=1 \mathrm{~K}$
R2 $=10 \mathrm{~K}$
$\mathrm{Cl}=1 \mu \mathrm{~F} \quad\left(1 \times 10^{-6}\right.$ or 0.000001$)$

$$
F=\frac{1.44}{\left(R_{1}+2 R_{2}\right) \times C}
$$

Question 1:

$R 1=2 K 2$
$\mathrm{R} 2=12 \mathrm{~K}$
$\mathrm{Cl}=220 \mu \mathrm{~F}$
(220×10-6)

Question 3:

$R 1=22 K$
$R 2=47 K$
$C 1=10 \mu \mathrm{~F}$

Question 2:

$\mathrm{R} 1=4 \mathrm{K7}$
$\mathrm{R} 2=22 \mathrm{~K}$
$\mathrm{C} 1=10 \mu \mathrm{~F}$
\longrightarrow
\longrightarrow
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 4:

$R 1=1 \mathrm{k} 2$
$R 2=2 K 2$
$C 1=47 \mu \mathrm{~F} \quad\left(47 \times 10^{-6}\right)$
$\mathrm{R} 2=2 \mathrm{~K} 2$
$\mathrm{Cl}=47 \mu \mathrm{~F}$
$\left(47 \times 10^{-6}\right)$

Question 1: Complete the circuit diagram of a 555 monostable circuit.

$$
T=1.1 \times C_{1} \times R_{1}
$$

Seconds

Question 1: Describe what a 555 monostable circuit does by completing the following.
A monostable is a circuit that can turn an output on for a certain amount of time and then turn it off again. The amount of time the output is switched on is set by two components:
\qquad and \qquad _.

When the circuit is first switched on the LED will be on / off.

Normally the voltage on pin2 is high / low but when the switch is pressed the voltage on pin2 will go high / low. This triggers the circuit and the output will be switched on / off and so the LED will be on / off. After a period of time the output will switch on / switch off.

Question 1: Complete the circuit diagram of a 555 monostable circuit.

Question 1:

R1 $=100 \mathrm{~K}$
$C 1=100 \mu \mathrm{~F}$
$\left(100 \times 10^{-6}\right)$

Question 2:

$$
\begin{aligned}
& R 1=100 K \\
& C 1=470 \mu \mathrm{~F}
\end{aligned}
$$

Question 3:

$R 1=100 \mathrm{~K}$
$C 1=1000 \mu \mathrm{~F}$
$\left(1000 \times 10^{-6}\right)$

Question 4:

$\mathrm{Rl}=47 \mathrm{~K}$
$\mathrm{Cl}=1 \mu \mathrm{~F} \quad\left(1 \times 10^{-6}\right)$

Question 1: Label the circuit diagram and picture of a diode showing the anode and cathode connections.

Question 2: Complete the following.
This circuit shows a reverse-biased / forward-biased diode.
The lamp will / will not light up.

Question 3: Complete the following.
This circuit shows a reverse-biased/forward-biased diode.
The lamp will / will not light up.

Question 4: Name each of the components in the circuit shown below.

Question 5: Explain why we have to use the diode in this circuit.

Question 1: Label the leads of the thyristor

Question 2: Label this circuit using the given component list.

Component list:

- Set switch
- Reset switch
- Resistor
- Thyristor
- Lamp

Question 3: Describe how the circuit works by completing these sentences.
When the circuit is first connected up to the battery the lamp will be switched on / off.
When SW1 is pressed current flows through the resistor into the gate / anode / cathode of the thyristor. The lamp will now light up.

When SW1 is released the lamp will stay lit / go out, the thyristor is said to be \qquad .

When SW2 is pressed and then released the current between the anode and cathode of the thyristor is interrupted. The thyristor will switch on/off and therefore the lamp will be switched on / off.

A thyristor is a type of electronic latch / amplifier / resistor.

Question 1: Label the leads of the transistor

Question 2: Describe how the circuit works by completing these sentences.

Normally the lamp will be on / off.
When SW1 is pressed a small / large current flows through the \qquad and into the_base / collector / emitter of the transistor.

This makes a small / large current flow between the collector and the base / emitter connections of the transistor.

The transistor is now switched on and the lamp will light up.

A transistor can be used as an electronic \qquad . It allows a tiny current flowing into the base to switch on a much larger current.

Question 2: Describe how the circuit works by completing these sentences.

When it is dark the resistance of the LDR is high / low and so very little current flows into the base. The transistor will be switched on / off and so the lamp be switched on / off.

When it is light the resistance of the LDR is high / low. The amount of current flowing into the base of the transistor will be higher / lower.

The transistor will switch on / off and the lamp will be on / off.

To make the lamp turn on when it is dark instead we
 would have to \qquad
\qquad

Question 1:

Add the labels

Question 2: Describe how the circuit works by completing these sentences.
When the touch pad is not touched its resistance is very high / low. This means that no current flows into the base and the transistor will be switched on / off so the lamp will be switched on /off.

When the touch pad terminals are touched a tiny amount of current will through your finger. This tiny current flows into the base / collector / emitter of the transistor. The transistor will therefore switch on /off.

A Darlington transistor is a very sensitive type of electronic switch and can amplify very tiny currents.

Question 1:

Are these signals analogue or digital?

Complete the truth tables for the logic gates:

BUFFER

Buffer Truth-Table

NOT

NOT Truth-Table

Input A	Output
0	
1	
0	
1	

Complete the truth tables for the logic gates:

AND

Input B	Input A	Output
0	0	
0	1	
1	0	
1	1	

OR

OR Truth-Table

Input B	Input A	Output
0	0	
0	1	
1	0	
1	1	

Complete the truth tables for the logic gates:
NAND

NAND Truth-Table

Input B	Input A	Output
0	0	
0	1	
1	0	
1	1	

NOR Truth-Table

Input B	Input A	Output
0	0	
0	1	
1	0	
1	1	

Question 1: Complete the truth tables for the logic gates:

XOR

NAND Truth-Table

Input B	Input A	Output
0	0	
0	1	
1	0	
1	1	

Question 2: Logic gates can be combined to form new circuits. Complete the sentences:

Question 1 a: This is the symbol of an 8-pin IC. Number each pin.

Question 1b: This is the symbol of a 16-pin IC. Number each pin.

Question 2: Label each pin using the table shown:

\qquad

Question 3: Add the wires to this diagram to make this decade counter circuit. Use the information from the questions above:
a. Connect the 4017 to the power supply.
b. Connect the Clock signal to the Clock input.
c. Connect the LEDs so they will come on in sequence.
d. Add a wire that will make the counter reset when it counts up to five.
e. Connect any unused inputs to OV and any unused outputs through a resistor to OV

Question 4: Why do we need to connect a resistor to each LED?

Question 5: What is the purpose of the resistor that is connected to the RESET input?

